
Why Math?∗

Kim B. Bruce†

Williams College
Robert L. Scot Drysdale

Dartmouth College
Charles Kelemen

Swarthmore College

Allen Tucker
Bowdoin College

April 29, 2002

Math requirements! Those words are enough to send chills down the spines of a good share of
new Computer Science majors every year. Bring the same topic up with practitioners and a good
share will rant about how much time and effort they wasted on college mathematics that they have
never used. Why is it that we force this material on unwilling students, especially when so many
practitioners claim it is unnecessary?

Some might claim that mathematics is simply used as a filter – to weed out those too weak to
survive – or even just to cut down the hordes of students to a more manageable size. Others might
argue that it is just another sign that faculty in their ivory towers have no clue what practitioners
really do or what they need. While surely there are subscribers to each of these views, we argue
here that the right kind of mathematics is essential to the understanding and practice of computer
science.

What is the right kind of mathematics? For computer science qua computer science, the core
need is discrete mathematics. For applications of computer science, the appropriate mathematics
is whatever is needed to model the application discipline.

Software solutions to most problems (e.g. banking, on-line commerce, airline reservations, etc.)
consist of constructing a (mathematical) model of the real (physical) domain and implementing it
in software. Mathematics can be helpful in all stages of software development: design, specification,
coding, verifying security and correctness of the final implementation. In many cases, particular
topics in mathematics are not as important as a high level of mathematical sophistication. Just
as athletes cross-train by running and lifting weights, exposure to challenging mathematics courses
can help computer science students in their ability to abstract away from details and be more
creative in their approaches to problems.

What is discrete mathematics? Here is the list of topics in discrete mathematics considered
core in Curriculum 2001 [oCC02]:

DS1. Functions, relations, and sets.

DS2. Basic logic.

DS3. Proof techniques (including mathematical induction and proof by contradiction).
∗Bruce’s research was partially supported by NSF grant CCR-9988210.
†Corresponding author: Kim B. Bruce, Department of Computer Science, Williams College, Williamstown, MA

01267. kim@cs.williams.edu,(413) 597-2273, FAX: (413) 597-4250.

1



DS4. Basics of counting.

DS5. Graphs and trees.

DS6. Discrete probability.

As a warm up for our presentation of the use of discrete mathematics, let’s start with a very
simple problem. Vectors are supported in standard libraries of C++ and Java. From the outside
a vector looks very much like an extendable array. That is, while a vector is created with a given
initial size, if something is added at an index beyond its extent, the vector automatically grows to
be large enough to hold a value at that index.

A vector may be implemented in many ways, for example as a linked list, but the most common
implementation uses an array to hold the values. With this implementation, if an element is inserted
beyond its extent, the data structure creates a new array that is large enough to include that index,
copies the elements from the old array to the new array, and then adds the new element at the
proper index. That’s pretty straightforward, but how much should the array be extended each time
it runs out of space?

For simplicity, let’s suppose that the array is being filled in increasing order, so each time it
runs out of space, it only actually needs to be extended by one cell. There are two strategies for
increasing the size of the array. One is always to increase it in size by the same fixed amount, F .
The other is to always increase it in size by a fixed percentage, P%. A simple analysis using discrete
mathematics (really just arithmetic and geometric series) shows that in a situation in which there
are many additions, the first strategy results in a situation where the average cost of each addition
is O(n), where n is the number of additions (or, in other words, the total of n additions costs
some constant times n2), while the second strategy results in a constant cost, on average, for each
addition (or, in other words, the total of n additions costs a constant times n).1

This is a simple, yet very important example using a very common data structure. Yet we
wouldn’t know how to compare the quite significant differences in costs without being able to
perform a mathematical analysis of the algorithms involved.

In the rest of this article, we sketch out some other places where mathematics, or the kind of
thinking fostered by the study of mathematics, is valuable in computing. Some of the applications
involve computations, but even more rely on the notion of formal specification and mathematical
reasoning.

1 Determining efficient algorithms

In this section we discuss some deceptively simple-seeming problems that require mathematical
analysis in order to choose and evaluate efficient algorithms. The example of vectors above is in
this same category of problems.

1.1 Scheduling cabs and limos for the Olympics

Mathematics is central to designing and analyzing algorithms. We could discuss solving recurrence
relationships, doing average-case analyses, and many other things that everyone agrees are highly

1The constants involved depend on the values of F and P . A very simple analysis is possible when you start with
an empty array and F = 1 (add 1 new element when you run out of space) and P = 100% (double the size of the
array when you run out of space).

2



mathematical. However, the argument could be made that only a handful of specialists need to do
these sorts of things; everybody else can just look up the algorithms that others have developed.

However, it is not that simple. Consider a simple consulting job: suppose that the independent
cab and limo operators in Salt Lake City wanted a program to help them schedule all the customers
who want to hire them during the recent Winter Olympics. Their first request is that they want
a program into which a driver can put n requests of the form “I want a cab and driver from this
start date and time to this finish date and time.” The program should select the largest possible
subset of the requests that do not overlap in time.

They then realized that instead of charging a fixed rate they could let customers bid for how
much they are willing to pay for the requested period. (Opening ceremonies and figure skating
are more popular than the biathlon.) The second version of the program is to schedule the set of
non-overlapping requests that maximizes the amount of money that the driver will receive.

However, some customers want to have the same driver for the whole time that they are in Salt
Lake. To accommodate this, a third version of the program is desired. This version takes a set of
time period requests, along with a single bid for the whole set. The driver must agree to drive for
all of the requested intervals or refuse the request. The program should pick the sets of requests
that maximizes the amount of money that the driver will receive without overlapping in time.

At first glance, it seems like the main difference between the three cases will be in the user
interface. But that is not the case. The first problem can be solved by a simple greedy algorithm
in O(n log n) time. (Sort the requests by finish time, and at each step schedule the first request
that does not overlap the last job scheduled.)

This greedy algorithm will not solve the second problem – but there is a nice O(n log n) dynamic
programming algorithm that will solve it.

The third problem is NP-hard. For practical purposes, this means that we won’t find a sub-
stantially better solution than trying all the 2n possible subsets of requests, so we had better try
to find a good but not optimal solution rather than promising to find the best solution.

How do we know that a simple greedy algorithm solves the first problem and that a dynamic
programming algorithm solves the second problem? We prove it. How do we know that the third
problem is NP-hard? We prove it by reducing a known NP-hard problem, Set Cover, to it. We
know of no way to do a professional job on this consulting assignment without doing these proofs.
(See [CLRS01], for example, for further information on algorithms.)

We can come up with dozens of examples where problems that seem very similar must be solved
using different techniques, or one is easy and the other is intractable. Mathematical proofs are the
only way to distinguish among the alternatives.

1.2 Akamai

Theory has applications with real consequences in the real world. One example is Akamai, a highly
successful startup company that has survived the “.com” crash. Companies hire Akamai to provide
faster and more reliable access to their web servers. The company was founded by Tom Leighton, a
Professor of Applied Mathematics at M.I.T., and Danny Lewin, a Ph.D. student in the Algorithms
group at M.I.T.’s Laboratory for Computer Science. Their patented algorithms for providing faster
and more reliable web service formed the basis of the company and has resulted in their ubiquitous
presence on the web.

3



2 Formal specifications in the real world

The term “formal methods” when used in hardware and software design means that precise math-
ematical specifications are used to define a product, and that the product’s implementation (code)
is verified using mathematical proof techniques. The extent to which formal methods are used to
design a particular product depends on many factors, including the cost of the development, the
efficiency of the resulting code, the capabilities and skills of the developers, and the safety-critical
nature of the application.

There has been a great deal of interest of late in formal specification and verification of hardware,
as well as software. The cost of a mistake in the design of a chip can be enormous, so that it can
be financially very beneficial to expend the resources to verify a hardware design. Similarly, when
designing a protocol that may be widely used, it is crucial to verify that it has the required properties
in areas such as performance and security.

Most people tend to think of these formal proofs of correctness when they hear the word formal
methods, but we are also thinking more broadly to encompass a variety of situations where there
are benefits to formal specification and the use of mathematical tools by computer scientists in
more general circumstances.

2.1 XML, recursion, and mathematical induction

The syntax of a programming language is formally specified via a context-free grammar or via syntax
diagrams. This formal specification makes it clear to both compiler writers and programmers what
is legal syntax.

An interesting recent development that has the same flavor as the formal specification of pro-
gramming language syntax has been the introduction of XML as a structured way of transmitting
information between programs and systems [BB99]. Data is presented using tags similar to those
used in HTML, but the tags indicate the semantic structure of the data, rather than its layout in
a browser. Data type definitions (DTD’s) provide a formal specification of the constraints on the
structure of data similar to the way a static type system indicates constraints on legal programs in
a programming language.

XML data can be parsed similarly to the way programming languages are parsed, resulting in
structures similar to parse trees. The data itself can be verified against DTD’s using techniques
similar to those used in type checkers on programming languages. However, rather than being
restricted to the inflexible structure of a fixed programming language, groups sharing data with
similar meanings can agree on different sets of tags and DTD’s for representing different kinds of
data.

If the sender and receiver agree on the DTD for data, then the sender can generate XML-
formatted data, while the receiver can parse it, verify it, and then transform it into a format that
is easier for the receiver to use.

All of this processing can use technology that has been developed for compiling programming
languages. This technology was one of the great triumphs of theoretical computer science, providing
provable algorithmic connections between the formal description of languages and programs for
processing the languages.

However, even if we ignore this technology and simply process the data directly using the
equivalent of recursive descent compilers, we immediately enter an area where the mathematical

4



understanding of XML as formally specified data provides tools for working with XML. The DTD
provides a specification of the structure of data similar to that of a regular expression. Simple algo-
rithms based on finite automata derived directly from those specifications can verify that incoming
data satisfy the specifications, while other data-directed algorithms parse and transform the data
into other formats.

XML documents can be understood in their parsed form as trees. As anyone who has worked
with trees knows, recursive algorithms for working with trees are significantly easier to understand
than equivalent iterative algorithms that must use a stack. (If you’ve never tried to write an iter-
ative algorithm to do an inorder traversal of a tree, you’ve missed a true challenge!) While many
programmers attempted to avoid recursive algorithms in the past, some because they didn’t un-
derstand it, and others because they believed it was too inefficient, processing recursively-specified
or tree-structured data is much, much easier with recursion.

How can we best understand recursion and ensure that our recursive programs work properly?
The answer, of course, is mathematical induction. This is one of many reasons that proof by
induction is one of the most important topics in a discrete mathematics course. A programmer
with a good understanding of mathematical induction finds it much easier to write and, even more
importantly, provide convincing arguments for the correctness of recursive algorithms.

We carefully wrote “provide convincing arguments” rather than “prove” in the previous para-
graph. While there are circumstances where a careful formal proof of correctness is called for, much
of the time it is sufficient to provide an informal argument for the correctness of an algorithm.

If a programmer can specify exactly what an algorithm does in terms of pre- and post-conditions,
it is generally relatively easy to provide an informal argument of correctness: Does the base case
satisfy the specification? Do complex cases eventually get down to a base case? If we presume that
all embedded recursive calls do the right thing, does this case satisfy the specification? Moreover,
rather than just using a process like this to verify an existing program, this process can be used to
develop and verify a program at the same time.

2.2 Secure and safety-critical systems

Events over the last several years have highlighted the importance of secure and safety-critical
systems. Problems have included inadvertently downloading viruses and other malicious programs
designed by hackers to gain access or destroy private data.

While most computer scientists will not write secure or safety-critical systems, they do need
to understand the existing and potential threats to their computing systems. Interesting work has
been done recently on ways of verifying that downloaded software from untrusted sources will not
behave in ways that place a system at risk. Downloaded applets in Java (at least with the proper
security policy set in the browser) are guaranteed to run in a “sandbox” that excludes reading from
or writing to the local file system.

More recently there has been interesting research on “proof-carrying code” [Nec97]. In this case,
the programmer provides a machine-assisted proof that the program will satisfy a given security
policy (e.g., won’t write to memory outside of fixed set of locations, won’t write to files, etc.). This
proof is typically much easier than a proof of correctness of the program. The proof may then be
downloaded with the code, and the proof may be checked (automatically, of course) against the
downloaded code to make sure that the proof is correct and that the downloaded code is secure.

While this may be deemed too expensive for code run only once (for which restricting execution

5



to a sandbox may be sufficient), it can provide great assurance against accidentally downloading
viruses or other damaging code as part of major programs that will be used repeatedly on a
system. Other techniques are also being developed (e.g., compiling to assembly language with
proof annotations) that use mathematical proof techniques for the same purpose.

It has been apparent for some time now that security is a very important issue when computers
are attached to the internet. Solutions to security problems are very likely to involve provably
secure protocols for guaranteeing certain kinds of safety.

3 Conclusion

The above arguments and examples give a sense of why mathematics and mathematical thinking are
important in computer science. There are many, many more examples that could have been cited
if there were more space. We believe that these examples are interesting and different enough from
the usual ones to suggest that the tools and reasoning taught in mathematics courses, especially
discrete mathematics courses, are of great value in practice.

The purpose of a computer science education is not to teach what you need to know for your
first job. Nor is it to teach what you will need to know for all of the jobs you will ever have. On the
job learning, reading, and short or semester-long courses (on-line or in person) will provide much
of what is needed over the course of one’s career.

Instead, one of the most important goals for a college or university education is to provide the
foundations for further learning. One way we have heard this put is that traditional university
education provides “just-in-case” learning rather than the “just-in-time” learning provided by on-
the-job training. We know that mathematical thinking will be of use – we just don’t know exactly
when or what form it will take.

References

[BB99] Jon Bosak and Tim Bray. XML and the second-generation web. Scientific American,
May 1999.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press/McGraw-Hill, second edition, 2001.

[Nec97] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 106–119. ACM
Press, 1997.

[oCC02] The Joint Task Force on Computing Curricula. Computing Curricula 2001: Computer
Science. IEEE Computer Society, 2002.

6


